Characterizing Brain Aging Trajectories in Older Adults with Autism Spectrum Disorder using a Novel Graph Theory Measure

Document
Description
Little is known about how cognitive and brain aging patterns differ in older adults with autism spectrum disorder (ASD). However, recent evidence suggests that individuals with ASD may be at greater risk of pathological aging conditions than their neurotypical (NT)

Little is known about how cognitive and brain aging patterns differ in older adults with autism spectrum disorder (ASD). However, recent evidence suggests that individuals with ASD may be at greater risk of pathological aging conditions than their neurotypical (NT) counterparts. A growing body of research indicates that older adults with ASD may experience accelerated cognitive decline and neurodegeneration as they age, although studies are limited by their cross-sectional design in a population with strong age-cohort effects. Studying aging in ASD and identifying biomarkers to predict atypical aging is important because the population of older individuals with ASD is growing. Understanding the unique challenges faced as autistic adults age is necessary to develop treatments to improve quality of life and preserve independence. In this study, a longitudinal design was used to characterize cognitive and brain aging trajectories in ASD as a function of autistic trait severity. Principal components analysis (PCA) was used to derive a cognitive metric that best explains performance variability on tasks measuring memory ability and executive function. The slope of the integrated persistent feature (SIP) was used to quantify functional connectivity; the SIP is a novel, threshold-free graph theory metric which summarizes the speed of information diffusion in the brain. Longitudinal mixed models were using to predict cognitive and brain aging trajectories (measured via the SIP) as a function of autistic trait severity, sex, and their interaction. The sensitivity of the SIP was also compared with traditional graph theory metrics. It was hypothesized that older adults with ASD would experience accelerated cognitive and brain aging and furthermore, age-related changes in brain network topology would predict age-related changes in cognitive performance. For both cognitive and brain aging, autistic traits and sex interacted to predict trajectories, such that older men with high autistic traits were most at risk for poorer outcomes. In men with autism, variability in SIP scores across time points trended toward predicting cognitive aging trajectories. Findings also suggested that autistic traits are more sensitive to differences in brain aging than diagnostic group and that the SIP is more sensitive to brain aging trajectories than other graph theory metrics. However, further research is required to determine how physiological biomarkers such as the SIP are associated with cognitive outcomes.