Description
Voltage Source Converters (VSCs) have been widely used in grid-connected applications with Distributed Energy Resource (DER) and Electric Vehicle (EV) applications. Replacement of traditional thyristors with Silicon/Silicon-Carbide based active switches provides full control capability to the converters and allows bidirectional power flow between the source and active loads. In this study, advanced control strategies for DER inverters and EV traction inverters will be explored.Chapter 1 gives a brief introduction to State-of-the-Art of VSC control strategies and summarizes the existing challenges in different applications. Chapter 2 presents multiple advanced control strategies of grid-connected DER inverters. Various grid support functions have been implemented in simulations and hardware experiments under both normal and abnormal operating conditions. Chapter 3 proposes an automated design and optimization process of a robust H-infinity controller to address the stability issue of grid-connected inverters caused by grid impedance variation. The principle of the controller synthesis is to select appropriate weighting functions to shape the systems closed-loop transfer function and to achieve robust stability and robust performance. An optimal controller will be selected by using a 2-Dimensional Pareto Front. Chapter 4 proposes a high-performance 4-layer communication architecture to facilitate the control of a large distribution network with high Photovoltaic (PV) penetration. Multiple strategies have been implemented to address the challenges
of coordination between communication and system control and between different communication protocols, which leads to a boost in the communication efficiency and makes the architecture highly scalable, adaptive, and robust. Chapter 5 presents the control strategies of a traditional Modular Multilevel Converter (MMC) and a novel Modular Isolated Multilevel Converter (MIMC) in grid-connected and variable speed drive applications. The proposed MIMC is able to achieve great size reduction for the submodule capacitors since the fundamental and double-line frequency voltage ripple has been cancelled. Chapter 6 shows a detailed hardware and controller design for a 48 V Belt-driven Starter Generator (BSG) inverter using automotive gate driver ICs and microcontroller. The inverter prototype has reached a power density of 333
W/inch3, up to 200 A phase current and 600 Hz output frequency.
Download count: 8
Details
Title
- Advanced Control of Distributed Energy Resource (DER) Inverters and Electric Vehicle (EV) Traction Drives
Contributors
- Si, Yunpeng (Author)
- Lei, Qin (Thesis advisor)
- Ayyanar, Raja (Committee member)
- Vittal, Vijay (Committee member)
- Zhang, Junshan (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2022
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: Ph.D., Arizona State University, 2022
- Field of study: Electrical Engineering