Description
Solving partial differential equations on surfaces has many applications including modeling chemical diffusion, pattern formation, geophysics and texture mapping. This dissertation presents two techniques for solving time dependent partial differential equations on various surfaces using the partition of unity method.

Solving partial differential equations on surfaces has many applications including modeling chemical diffusion, pattern formation, geophysics and texture mapping. This dissertation presents two techniques for solving time dependent partial differential equations on various surfaces using the partition of unity method. A novel spectral cubed sphere method that utilizes the windowed Fourier technique is presented and used for both approximating functions on spherical domains and solving partial differential equations. The spectral cubed sphere method is applied to solve the transport equation as well as the diffusion equation on the unit sphere. The second approach is a partition of unity method with local radial basis function approximations. This technique is also used to explore the effect of the node distribution as it is well known that node choice plays an important role in the accuracy and stability of an approximation. A greedy algorithm is implemented to generate good interpolation nodes using the column pivoting QR factorization. The partition of unity radial basis function method is applied to solve the diffusion equation on the sphere as well as a system of reaction-diffusion equations on multiple surfaces including the surface of a red blood cell, a torus, and the Stanford bunny. Accuracy and stability of both methods are investigated.
Reuse Permissions
  • Downloads
    PDF (7.2 MB)
    Download count: 2

    Details

    Title
    • Partition of Unity Methods for Solving Partial Differential Equations on Surfaces
    Contributors
    Date Created
    2021
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2021
    • Field of study: Mathematics

    Machine-readable links