Description
Object sorting is a very common application especially in the industry setting, but this is a labor intensive and time consuming process and it proves to be challenging if done manually. Thanks to the rapid development in technology now almost all these object sorting tasks are partially or completely automated. Image processing techniques are essential for the full operation of such a pick and place robot as it is responsible for perceiving the environment and to correctly identify ,classify and localize the different objects in it. In order for the robots to perform accurate object sorting with efficiency and stability this thesis discusses how different Deep learning based perception techniques can be used. In the era of Artificial Intelligence this sorting problem can be done more efficiently than the existing techniques. This thesis presents different image processing techniques and algorithms that can be used to perform object sorting efficiently. A comparison between three different deep learning based techniques is presented and their pros and cons are discussed. Furthermore this thesis also presents a comprehensive study about the kinematics and the dynamics involved in a 2 Degree of Freedom Robotic Manipulator .
Download count: 1
Details
Title
- Image Processing Techniques for Object Sorting by a Two Degree of Freedom Robotic Manipulator: A Comparative Computer Simulation Study
Contributors
- Ranganathan, Pavithra (Author)
- Rodriguez, Armando (Thesis advisor)
- Si, Jennie (Committee member)
- Berman, Spring (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2021
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: M.S., Arizona State University, 2021
- Field of study: Computer Engineering