Description
Artificial Intelligence, as the hottest research topic nowadays, is mostly driven by data. There is no doubt that data is the king in the age of AI. However, natural high-quality data is precious and rare. In order to obtain enough and eligible data to support AI tasks, data processing is always required. To be even worse, the data preprocessing tasks are often dull and heavy, which require huge human labors to deal with. Statistics show 70% - 80% of the data scientists' time is spent on data integration process. Among various reasons, schema changes that commonly exist in the data warehouse are one significant obstacle that impedes the automation of the end-to-end data integration process. Traditional data integration applications rely on data processing operators such as join, union, aggregation and so on. Those operations are fragile and can be easily interrupted by schema changes. Whenever schema changes happen, the data integration applications will require human labors to solve the interruptions and downtime. The industries as well as the data scientists need a new mechanism to handle the schema changes in data integration tasks. This work proposes a new direction of data integration applications based on deep learning models. The data integration problem is defined in the scenario of integrating tabular-format data with natural schema changes, using the cell-based data abstraction. In addition, data augmentation and adversarial learning are investigated to boost the model robustness to schema changes. The experiments are tested on two real-world data integration scenarios, and the results demonstrate the effectiveness of the proposed approach.
Download count: 3
Details
Title
- Examining Data Integration with Schema Changes Based on Cell-level Mapping Using Deep Learning Models
Contributors
- Wang, Zijie (Author)
- Zou, Jia (Thesis advisor)
- Baral, Chitta (Committee member)
- Candan, K. Selcuk (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2021
Resource Type
Collections this item is in
Note
- Partial requirement for: M.S., Arizona State University, 2021
- Field of study: Computer Science