Description
Spatial awareness (i.e., the sense of the space that we are in) involves the integration of auditory, visual, vestibular, and proprioceptive sensory information of environmental events. Hearing impairment has negative effects on spatial awareness and can result in deficits in

Spatial awareness (i.e., the sense of the space that we are in) involves the integration of auditory, visual, vestibular, and proprioceptive sensory information of environmental events. Hearing impairment has negative effects on spatial awareness and can result in deficits in communication and the overall aesthetic experience of life, especially in noisy or reverberant environments. This deficit occurs as hearing impairment reduces the signal strength needed for auditory spatial processing and changes how auditory information is combined with other sensory inputs (e.g., vision). The influence of multisensory processing on spatial awareness in listeners with normal, and impaired hearing is not assessed in clinical evaluations, and patients’ everyday sensory experiences are currently not directly measurable. This dissertation investigated the role of vision in auditory localization in listeners with normal, and impaired hearing in a naturalistic stimulus setting, using natural gaze orienting responses. Experiments examined two behavioral outcomes—response accuracy and response time—based on eye movement in response to simultaneously presented auditory and visual stimuli. The first set of experiments examined the effects of stimulus spatial saliency on response accuracy and response time and the extent of visual dominance in both metrics in auditory localization. The results indicate that vision can significantly influence both the speed and accuracy of auditory localization, especially when auditory stimuli are more ambiguous. The influence of vision is shown for both normal hearing- and hearing-impaired listeners. The second set of experiments examined the effect of frontal visual stimulation on localizing an auditory target presented from in front of or behind a listener. The results show domain-specific effects of visual capture on both response time and response accuracy. These results support previous findings that auditory-visual interactions are not limited by the spatial rule of proximity. These results further suggest the strong influence of vision on both the processing and the decision-making stages of sound source localization for both listeners with normal, and impaired hearing.
Reuse Permissions
  • Downloads
    PDF (3 MB)
    Download count: 2

    Details

    Title
    • Response Accuracy and Response Time in Multisensory Localization
    Contributors
    Date Created
    2021
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2021
    • Field of study: Speech and Hearing Science

    Machine-readable links