Description
Transorbital surgery has gained recent notoriety due to its incorporation into endoscopic skull base surgery. The body of published literature on the field is cadaveric and observation. The pre-clinical studies are focused on the use of the endoscope only. Furthermore the methodology utilised in the published literature is inconsistent and does not embody the optimal principles of scientific experimentation. This body of work evaluates a minimally invasive novel surgical corridor - the transorbital approach - its validity in neurosurgical practice, as well as both qualitatively and quantitatively assessing available technological advances in a robust experimental fashion. While the endoscope is an established means of visualisation used in clinical transorbital surgery, the microscope has never been assessed with respect to the transorbital approach. This question is investigated here and the anatomical and surgical benefits and limitations of microscopic visualisation demonstrated. The comparative studies provide increased knowledge on specifics pertinent to neurosurgeons and other skull base specialists when planning pre-operatively, such as pathology location, involved anatomical structures, instrument maneuvrability and the advantages and disadvantages of the distinct visualisation technologies. This is all with the intention of selecting the most suitable surgical approach and technology, specific to the patient, pathology and anatomy, so as to perform the best surgical procedure. The research findings illustrated in this body of work are diverse, reproducible and applicable. The transorbital surgical corridor has substantive potential for access to the anterior cranial fossa and specific surgical target structures. The neuroquantitative metrics investigated confirm the utility and benefits specific to the respective visualisation technologies i.e. the endoscope and microscope. The most appropriate setting wherein the approach should be used is also discussed. The transorbital corridor has impressive potential, can utilise all available technological advances, promotes multi-disciplinary co-operation and learning amongst clinicians and ultimately, is a means of improving operative patient care.
Download count: 1
Details
Title
- Transorbital Skull Base Surgery; Exploratory Quantitative Assessment of the Microscopic and Endoscopic Surgical Corridor
Contributors
- Houlihan, Lena Mary (Author)
- Preul, Mark C. (Thesis advisor)
- Vernon, Brent (Thesis advisor)
- O' Sullivan, Michael G.J. (Committee member)
- Lawton, Michael T. (Committee member)
- Santarelli, Griffin (Committee member)
- Smith, Brian (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2021
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: Ph.D., Arizona State University, 2021
- Field of study: Neuroscience