165151-Thumbnail Image.png
Description

Virus-like particles (VLPs) are optimum candidates for creating vaccines, as they are highly flexible, adaptable, safe, and similar to the structural proteins of the target cells. The COVID 19 pandemic has increased the need to create effective and safe vaccines

Virus-like particles (VLPs) are optimum candidates for creating vaccines, as they are highly flexible, adaptable, safe, and similar to the structural proteins of the target cells. The COVID 19 pandemic has increased the need to create effective and safe vaccines that can be mass produced to stop the spread of COVID-19. Till now, various types of vaccine platforms have been utilized to create COVID-19 vaccines, each with unique characteristics and techniques. It is essential to use robust vaccine platforms that can deliver optimum results in a short period of time, with minimal risks. The structural proteins found in SARS-CoV-2, such as Spike (S) protein have been widely targeted to induce antibody response, also called a humoral response, which is a part of acquired immunity. The other structural proteins such as M (membrane) and E (envelope) can also be used as targets for antibodies. The S2 and glycoprotein (S full) can be used to induce an efficient IgG response. Therefore, the incorporation of structural proteins into VLPs can prove to be useful. Furthermore, double mosaic VLPs employs double epitopes, which can effectively cover the distances between the S proteins, thus optimizing the B cell activation process. This review describes the various developments that have taken place in the field of VLPs and more specifically, with regards to developing VLP vaccines against the SARS-CoV-2 virus.

Reuse Permissions
  • 2.19 MB application/pdf

    Download restricted. Please sign in.
    Restrictions Statement

    Barrett Honors College theses and creative projects are restricted to ASU community members.

    Download count: 3

    Details

    Title
    • The Potential of Virus-Like Particles (VLPs) as an Effective Vaccine Candidate for the COVID-19 Vaccine: Review
    Contributors
    Date Created
    2022-05
    Resource Type
  • Text
  • Machine-readable links