Description
Matching or stratification is commonly used in observational studies to remove bias due to confounding variables. Analyzing matched data sets requires specific methods which handle dependency among observations within a stratum. Also, modern studies often include hundreds or thousands of

Matching or stratification is commonly used in observational studies to remove bias due to confounding variables. Analyzing matched data sets requires specific methods which handle dependency among observations within a stratum. Also, modern studies often include hundreds or thousands of variables. Traditional methods for matched data sets are challenged in high-dimensional settings, mixed type variables (numerical and categorical), nonlinear andinteraction effects. Furthermore, machine learning research for such structured data is quite limited. This dissertation addresses this important gap and proposes machine learning models for identifying informative variables from high-dimensional matched data sets. The first part of this dissertation proposes a machine learning model to identify informative variables from high-dimensional matched case-control data sets. The outcome of interest in this study design is binary (case or control), and each stratum is assumed to have one unit from each outcome level. The proposed method which is referred to as Matched Forest (MF) is effective for large number of variables and identifying interaction effects. The second part of this dissertation proposes three enhancements of MF algorithm. First, a regularization framework is proposed to improve variable selection performance in excessively high-dimensional settings. Second, a classification method is proposed to classify unlabeled pairs of data. Third, two metrics are proposed to estimate the effects of important variables identified by MF. The third part proposes a machine learning model based on Neural Networks to identify important variables from a more generalized matched case-control data set where each stratum has one unit from case outcome level and more than one unit from control outcome level. This method which is referred to as Matched Neural Network (MNN) performs better than current algorithms to identify variables with interaction effects. Lastly, a generalized machine learning model is proposed to identify informative variables from high-dimensional matched data sets where the outcome has more than two levels. This method outperforms existing algorithms in the literature in identifying variables with complex nonlinear and interaction effects.
Reuse Permissions
  • Downloads
    PDF (4.7 MB)
    Download count: 3

    Details

    Title
    • Machine Learning Models for High-Dimensional Matched Data
    Contributors
    Date Created
    2021
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2021
    • Field of study: Industrial Engineering

    Machine-readable links