Description
Extreme weather events, such as hurricanes, continue to disrupt critical infrastructure like energy grids that provide lifeline services for urban systems, thus making resilience imperative for stakeholders, infrastructure managers, and community leaders to strategize in the face of 21st-century challenges.

Extreme weather events, such as hurricanes, continue to disrupt critical infrastructure like energy grids that provide lifeline services for urban systems, thus making resilience imperative for stakeholders, infrastructure managers, and community leaders to strategize in the face of 21st-century challenges. In Puerto Rico after Hurricane Maria, for example, the energy system took over nine months to recover in parts of the island, thousands of lives were lost, and livelihoods were severely impacted. Urban systems consist of interconnected human networks and physical infrastructure, and the subsequent complexity that is increasingly difficult to make sense of toward resilience enhancing efforts. While the resilience paradigm has continued to progress among and between several disciplinary fields, such as social science and engineering, an ongoing challenge is integrating social and technical approaches for resilience research. Misaligned or siloed perspectives can lead to misinformative and inadequate strategies that undercut inherent capacities or ultimately result in maladaptive infrastructure, social hardship, and sunken investments. This dissertation contributes toward integrating the social and technical resilience domains and transitioning established disaster resilience assessments into complexity perspectives by asking the overarching question: How can a multiplicity of resilience assessments be integrated by geographic and network mapping approaches to better capture the complexity of urban systems, using Hurricane Maria in Puerto Rico as a case study? The first chapter demonstrates how social metrics can be used in a socio-technical network modeling framework for a large-scale electrical system, presents a novel framing of social hardship due to disasters, and proposes a method for developing a social hardship metric using a treatment-effect approach. A second chapter presents a conceptual analysis of disaster resilience indicators from a complexity perspective and links socio-ecological systems resilience principles to tenets of complexity. A third chapter presents a novel methodology for integrating social complexity with performance-based metrics by leveraging distributed ethnographies and a thick mapping approach. Lastly, a concluding chapter synthesizes the previous chapters to discuss a broad framing for socio-technical resilience assessments, the role of space and place as anchors for multiple framings of a complex system, caveats given ongoing developments in Puerto Rico, and implications for collaborative resilience research.
Reuse Permissions
  • Details

    Title
    • Transitioning into Complexity-Driven Resilience Assessments for Urban Systems
    Contributors
    Agent
    Date Created
    2021
    Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2021
    • Field of study: Sustainability

    Machine-readable links