Description
Systematic Reviews (SRs) aim to synthesize the totality of evidence for clinical practice and are important in making clinical practice guidelines and health policy decisions. However, conducting SRs manually is a laborious and time-consuming process. This challenge is growing due

Systematic Reviews (SRs) aim to synthesize the totality of evidence for clinical practice and are important in making clinical practice guidelines and health policy decisions. However, conducting SRs manually is a laborious and time-consuming process. This challenge is growing due to the increase in the number of databases to search and the papers being published. Hence, the automation of SRs is an essential task. The goal of this thesis work is to develop Natural Language Processing (NLP)-based classifiers to automate the title and abstract-based screening for clinical SRs based on inclusion/exclusion criteria. In clinical SRs, a high-sensitivity system is a key requirement. Most existing methods for SRs use binary classification systems trained on labeled data to predict inclusion/exclusion. While previous studies have shown that NLP-based classification methods can automate title and abstract-based screening for SRs, methods for achieving high-sensitivity have not been empirically studied. In addition, the training strategy for binary classification has several limitations: (1) it ignores the inclusion/exclusion criteria, (2) lacks generalization ability, (3) suffers from low resource data, and (4) fails to achieve reasonable precision at high-sensitivity levels. This thesis work presents contributions to several aspects of the clinical systematic review domain. First, it presents an empirical study of NLP-based supervised text classification and high-sensitivity methods on datasets developed from six different SRs in the clinical domain. Second, this thesis work provides a novel approach to view SR as a Question Answering (QA) problem in order to overcome the limitations of the binary classification training strategy; and propose a more general abstract screening model for different SRs. Finally, this work provides a new QA-based dataset for six different SRs which is made available to the community.
Reuse Permissions
  • Downloads
    PDF (1016.3 KB)
    Download count: 2

    Details

    Title
    • Automation of Title and Abstract Screening for Clinical Systematic Reviews
    Contributors
    Date Created
    2021
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2021
    • Field of study: Computer Science

    Machine-readable links