Description
A distributed wireless sensor network (WSN) is a network of a large number of lowcost,multi-functional sensors with power, bandwidth, and memory constraints, operating in remote environments with sensing and communication capabilities. WSNs are a source for a large amount of data and

A distributed wireless sensor network (WSN) is a network of a large number of lowcost,multi-functional sensors with power, bandwidth, and memory constraints, operating in remote environments with sensing and communication capabilities. WSNs are a source for a large amount of data and due to the inherent communication and resource constraints, developing a distributed algorithms to perform statistical parameter estimation and data analysis is necessary. In this work, consensus based distributed algorithms are developed for distributed estimation and processing over WSNs. Firstly, a distributed spectral clustering algorithm to group the sensors based on the location attributes is developed. Next, a distributed max consensus algorithm robust to additive noise in the network is designed. Furthermore, distributed spectral radius estimation algorithms for analog, as well as, digital communication models are developed. The proposed algorithms work for any connected graph topologies. Theoretical bounds are derived and simulation results supporting the theory are also presented.
Reuse Permissions
  • Downloads
    PDF (1.9 MB)
    Download count: 3

    Details

    Title
    • Distributed Consensus Algorithms for Wireless Sensor Networks
    Contributors
    Date Created
    2021
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2021
    • Field of study: Electrical Engineering

    Machine-readable links