Description
While significant qualitative, user study-focused research has been done on augmented reality, relatively few studies have been conducted on multiple, co-located synchronously collaborating users in augmented reality. Recognizing the need for more collaborative user studies in augmented reality and the

While significant qualitative, user study-focused research has been done on augmented reality, relatively few studies have been conducted on multiple, co-located synchronously collaborating users in augmented reality. Recognizing the need for more collaborative user studies in augmented reality and the value such studies present, a user study is conducted of collaborative decision-making in augmented reality to investigate the following research question: “Does presenting data visualizations in augmented reality influence the collaborative decision-making behaviors of a team?” This user study evaluates how viewing data visualizations with augmented reality headsets impacts collaboration in small teams compared to viewing together on a single 2D desktop monitor as a baseline. Teams of two participants performed closed and open-ended evaluation tasks to collaboratively analyze data visualized in both augmented reality and on a desktop monitor. Multiple means of collecting and analyzing data were employed to develop a well-rounded context for results and conclusions, including software logging of participant interactions, qualitative analysis of video recordings of participant sessions, and pre- and post-study participant questionnaires. The results indicate that augmented reality doesn’t significantly change the quantity of team member communication but does impact the means and strategies participants use to collaborate.
Downloads
PDF (54.1 MB)
Download count: 6

Details

Title
  • Exploring the Impact of Augmented Reality on Collaborative Decision-Making in Small Teams
Contributors
Date Created
2020
Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Computer Science 2020

    Machine-readable links