Description
Students seldom spontaneously collaborate with each other. A system that can measure collaboration in real time could be useful, for example, by helping the teacher locate a group requiring guidance. To address this challenge, the research presented here focuses on

Students seldom spontaneously collaborate with each other. A system that can measure collaboration in real time could be useful, for example, by helping the teacher locate a group requiring guidance. To address this challenge, the research presented here focuses on building and comparing collaboration detectors for different types of classroom problem solving activities, such as card sorting and handwriting.

Transfer learning using different representations was also studied with a goal of building collaboration detectors for one task can be used with a new task. Data for building such detectors were collected in the form of verbal interaction and user action logs from students’ tablets. Three qualitative levels of interactivity were distinguished: Collaboration, Cooperation and Asymmetric Contribution. Machine learning was used to induce a classifier that can assign a code for every episode based on the set of features. The results indicate that machine learned classifiers were reliable and can transfer.
Downloads
PDF (3.3 MB)
Download count: 10

Details

Title
  • Automatic Classification of Small Group Dynamics using Speech and Collaborative Writing
Contributors
Date Created
2020
Resource Type
  • Text
  • Collections this item is in
    Note
    • Doctoral Dissertation Computer Science 2020

    Machine-readable links