Description
Soil impacts from crude oil spills in the United States are regulated at the state level using the analytical group total petroleum hydrocarbons (TPH) as the primary regulatory metric. TPH concentration in soil is used to enforce and verify

Soil impacts from crude oil spills in the United States are regulated at the state level using the analytical group total petroleum hydrocarbons (TPH) as the primary regulatory metric. TPH concentration in soil is used to enforce and verify compliance with cleanup levels (CULs). While there are significant differences between states concerning TPH CULs based on land use, most states enforce an action level of 100 mg TPH kg⁻1. The most common standard method for quantification of TPH in soils is EPA Method 8015, which entails extraction of petroleum hydrocarbons by dichloromethane and analysis by gas chromatography with flame ionization detection (GC-FID). Using Method 8015 or similar methods, TPH is defined as the cumulative area of all peaks within a defined analytical range (typically C6-C36). A limitation of TPH standard methods is their lack of specificity for petroleum hydrocarbons (i.e., these methods can also detect and quantify compounds that are an inherent part of natural soil organic matter (SOM)). While the interference of SOM compounds with TPH quantification is known, documentation regarding the extent of this interference is almost absent in the peer-reviewed literature. In this thesis, 15 biogeochemically-diverse soils, uncontaminated by crude oil hydrocarbons, were sampled from geographically diverse locations and investigated in an effort to determine the concentration of SOM that registers as TPH. Solvent extractions using dichloromethane or n-pentane in conjunction with GC-FID analysis showed that all soils had detectable concentrations of TPH ranging from 160 to 2700 mg TPH kg–1. Based on the results from this study, it can be concluded that many soils have a higher apparent TPH concentration than most US state-level CULs. In addition, the data from this study show that soils with a lower pH and/or a higher organic carbon content also have higher concentrations of apparent TPH. Findings from this thesis show that uncontaminated soils have a significant apparent TPH concentration that would be considered part of the TPH originating from contamination and should be accounted for in the regulatory landscape.
Downloads
PDF (2.9 MB)
Download count: 6

Details

Title
  • Quantification of Soil Organic Matter as Total Petroleum Hydrocarbons by GC-FID in Non-Contaminated Soils
Contributors
Date Created
2020
Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Civil, Environmental and Sustainable Engineering 2020

    Machine-readable links