Description
There are significantly higher rates of pilot error events during surface operations at night than during the day. Events include incidents, accidents, wrong surface takeoffs and landings, hitting objects, turning on the wrong taxiway, departing the runway surface, among others.

There are significantly higher rates of pilot error events during surface operations at night than during the day. Events include incidents, accidents, wrong surface takeoffs and landings, hitting objects, turning on the wrong taxiway, departing the runway surface, among others. There is evidence to suggest that these events are linked to situational awareness. Improvements to situational awareness can be accomplished through training to instruct pilots to increase attention outside of the cockpit while taxiing at night. However, the Federal Aviation Administration (FAA) night time requirements are relatively low to obtain a private pilot certification. The purpose of this study was to determine the effect of flight training experience on conducting safe and incident-free surface operations at night, collect pilot opinions on night training requirements and resources, and analyze the need for night time on flight reviews. A survey was distributed to general aviation pilots and 239 responses were collected to be analyzed. The responses indicated a higher observed incident rate at night than during the day, however there were no significant effects of night training hours or type of training received (Part 61, Part 141/142, or both) on incident rate. Additionally, higher total night hours improved pilot confidence at night and decreased incident rate. The overall opinions indicated that FAA resources on night flying were effective in providing support, but overall pilots were not in support of or against adding night time requirements to flight reviews and found night training requirements to be somewhat effective.
Downloads
PDF (1.1 MB)

Details

Title
  • Training Deficiencies in Airport Surface Operations at Night
Contributors
Date Created
2020
Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Aerospace Engineering 2020

    Machine-readable links