Description
Plagiarism is a huge problem in a learning environment. In programming classes especially, plagiarism can be hard to detect as source codes' appearance can be easily modified without changing the intent through simple formatting changes or refactoring. There are a

Plagiarism is a huge problem in a learning environment. In programming classes especially, plagiarism can be hard to detect as source codes' appearance can be easily modified without changing the intent through simple formatting changes or refactoring. There are a number of plagiarism detection tools that attempt to encode knowledge about the programming languages they support in order to better detect obscured duplicates. Many such tools do not support a large number of languages because doing so requires too much code and therefore too much maintenance. It is also difficult to add support for new languages because each language is vastly different syntactically. Tools that are more extensible often do so by reducing the features of a language that are encoded and end up closer to text comparison tools than structurally-aware program analysis tools.

Kitsune attempts to remedy these issues by tying itself to Antlr, a pre-existing language recognition tool with over 200 currently supported languages. In addition, it provides an interface through which generic manipulations can be applied to the parse tree generated by Antlr. As Kitsune relies on language-agnostic structure modifications, it can be adapted with minimal effort to provide plagiarism detection for new languages. Kitsune has been evaluated for 10 of the languages in the Antlr grammar repository with success and could easily be extended to support all of the grammars currently developed by Antlr or future grammars which are developed as new languages are written.
Downloads
PDF (1.6 MB)
Download count: 2

Details

Title
  • Kitsune: Structurally-Aware and Adaptable Plagiarism Detection
Contributors
Date Created
2020
Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Software Engineering 2020

    Machine-readable links