Description
The chromatic number $\chi(G)$ of a graph $G=(V,E)$ is the minimum
number of colors needed to color $V(G)$ such that no adjacent vertices
receive the same color. The coloring number $\col(G)$ of a graph
$G$ is the minimum number $k$ such that there exists a linear ordering
of $V(G)$ for which each vertex has at most $k-1$ backward neighbors.
It is well known that the coloring number is an upper bound for the
chromatic number. The weak $r$-coloring number $\wcol_{r}(G)$ is
a generalization of the coloring number, and it was first introduced
by Kierstead and Yang \cite{77}. The weak $r$-coloring number $\wcol_{r}(G)$
is the minimum integer $k$ such that for some linear ordering $L$
of $V(G)$ each vertex $v$ can reach at most $k-1$ other smaller
vertices $u$ (with respect to $L$) with a path of length at most
$r$ and $u$ is the smallest vertex in the path. This dissertation proves that $\wcol_{2}(G)\le23$ for every planar graph $G$.
The exact distance-$3$ graph $G^{[\natural3]}$ of a graph $G=(V,E)$
is a graph with $V$ as its set of vertices, and $xy\in E(G^{[\natural3]})$
if and only if the distance between $x$ and $y$ in $G$ is $3$.
This dissertation improves the best known upper bound of the
chromatic number of the exact distance-$3$ graphs $G^{[\natural3]}$
of planar graphs $G$, which is $105$, to $95$. It also improves
the best known lower bound, which is $7$, to $9$.
A class of graphs is nowhere dense if for every $r\ge 1$ there exists $t\ge 1$ such that no graph in the class contains a topological minor of the complete graph $K_t$ where every edge is subdivided at most $r$ times. This dissertation gives a new characterization of nowhere dense classes using generalized notions of the domination number.
number of colors needed to color $V(G)$ such that no adjacent vertices
receive the same color. The coloring number $\col(G)$ of a graph
$G$ is the minimum number $k$ such that there exists a linear ordering
of $V(G)$ for which each vertex has at most $k-1$ backward neighbors.
It is well known that the coloring number is an upper bound for the
chromatic number. The weak $r$-coloring number $\wcol_{r}(G)$ is
a generalization of the coloring number, and it was first introduced
by Kierstead and Yang \cite{77}. The weak $r$-coloring number $\wcol_{r}(G)$
is the minimum integer $k$ such that for some linear ordering $L$
of $V(G)$ each vertex $v$ can reach at most $k-1$ other smaller
vertices $u$ (with respect to $L$) with a path of length at most
$r$ and $u$ is the smallest vertex in the path. This dissertation proves that $\wcol_{2}(G)\le23$ for every planar graph $G$.
The exact distance-$3$ graph $G^{[\natural3]}$ of a graph $G=(V,E)$
is a graph with $V$ as its set of vertices, and $xy\in E(G^{[\natural3]})$
if and only if the distance between $x$ and $y$ in $G$ is $3$.
This dissertation improves the best known upper bound of the
chromatic number of the exact distance-$3$ graphs $G^{[\natural3]}$
of planar graphs $G$, which is $105$, to $95$. It also improves
the best known lower bound, which is $7$, to $9$.
A class of graphs is nowhere dense if for every $r\ge 1$ there exists $t\ge 1$ such that no graph in the class contains a topological minor of the complete graph $K_t$ where every edge is subdivided at most $r$ times. This dissertation gives a new characterization of nowhere dense classes using generalized notions of the domination number.
Download count: 3
Details
Title
- Estimating Low Generalized Coloring Numbers of Planar Graphs
Contributors
- Almulhim, Ahlam (Author)
- Kierstead, Henry (Thesis advisor)
- Sen, Arunabha (Committee member)
- Richa, Andrea (Committee member)
- Czygrinow, Andrzej (Committee member)
- Fishel, Susanna (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2020
Resource Type
Collections this item is in
Note
- Doctoral Dissertation Mathematics 2020