Description
The availability of bulk gallium nitride (GaN) substrates has generated great interest in the development of vertical GaN-on-GaN power devices. The vertical devices made of GaN have not been able to reach their true potential due to material growth related issues. Power devices typically have patterned p-n, and p-i junctions in lateral, and vertical direction relative to the substrate. Identifying the variations from the intended layer design is crucial for failure analysis of the devices. A most commonly used dopant profiling technique, secondary ion mass spectroscopy (SIMS), does not have the spatial resolution to identify the dopant distribution in patterned devices. The possibility of quantitative dopant profiling at a sub-micron scale for GaN in a scanning electron microscope (SEM) is discussed. The total electron yield in an SEM is shown to be a function of dopant concentration which can potentially be used for quantitative dopant profiling.
Etch-and-regrowth is a commonly employed strategy to generate the desired patterned p-n and p-i junctions. The devices involving etch-and-regrowth have poor performance characteristics like high leakage currents, and lower breakdown voltages. This is due to damage induced by the dry etching process, and the nature of the regrowth interface, which is important to understand in order to address the key issue of leakage currents in etched and regrown devices. Electron holography is used for electrostatic potential profiling across the regrowth interfaces to identify the charges introduced by the etching process. SIMS is used to identify the impurities introduced at the interfaces due to etch-and-regrowth process.
Etch-and-regrowth is a commonly employed strategy to generate the desired patterned p-n and p-i junctions. The devices involving etch-and-regrowth have poor performance characteristics like high leakage currents, and lower breakdown voltages. This is due to damage induced by the dry etching process, and the nature of the regrowth interface, which is important to understand in order to address the key issue of leakage currents in etched and regrown devices. Electron holography is used for electrostatic potential profiling across the regrowth interfaces to identify the charges introduced by the etching process. SIMS is used to identify the impurities introduced at the interfaces due to etch-and-regrowth process.
Download count: 4
Details
Title
- Nanoscale Electronic Properties in GaN Based Structures for Power Electronics Using Electron Microscopy
Contributors
- Alugubelli, Shanthan Reddy (Author)
- Ponce, Fernando A. (Thesis advisor)
- McCartney, Martha (Committee member)
- Newman, Nathan (Committee member)
- Zhao, Yuji (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019
Subjects
Resource Type
Collections this item is in
Note
- Doctoral Dissertation Materials Science and Engineering 2019