Description
Developing countries suffer from various health challenges due to inaccessible medical diagnostic laboratories and lack of resources to establish new laboratories. One way to address these issues is to develop diagnostic systems that are suitable for the low-resource setting. In

Developing countries suffer from various health challenges due to inaccessible medical diagnostic laboratories and lack of resources to establish new laboratories. One way to address these issues is to develop diagnostic systems that are suitable for the low-resource setting. In addition to this, applications requiring rapid analyses further motivates the development of portable, easy-to-use, and accurate Point of Care (POC) diagnostics. Lateral Flow Immunoassays (LFIAs) are among the most successful POC tests as they satisfy most of the ASSURED criteria. However, factors like reagent stability, reaction rates limit the performance and robustness of LFIAs. The fluid flow rate in LFIA significantly affect the factors mentioned above, and hence, it is desirable to maintain an optimal fluid velocity in porous media.

The main objective of this study is to build a statistical model that enables us to determine the optimal design parameters and ambient conditions for achieving a desired fluid velocity in porous media. This study mainly focuses on the effects of relative humidity and temperature on evaporation in porous media and the impact of geometry on fluid velocity in LFIAs. A set of finite element analyses were performed, and the obtained simulation results were then experimentally verified using Whatman filter paper with different geometry under varying ambient conditions. Design of experiments was conducted to estimate the significant factors affecting the fluid flow rate.

Literature suggests that liquid evaporation is one of the major factors that inhibit fluid penetration and capillary flow in lateral flow Immunoassays. The obtained results closely align with the existing literature and conclude that a desired fluid flow rate can be achieved by tuning the geometry of the porous media. The derived statistical model suggests that a dry and warm atmosphere is expected to inhibit the fluid flow rate the most and vice-versa.
Downloads
PDF (3.6 MB)
Download count: 2

Details

Title
  • An Investigative Study on Effects of Geometry, Relative Humidity, and Temperature on Fluid Flow Rate in Porous Media
Contributors
Date Created
2019
Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Electrical Engineering 2019

    Machine-readable links