Description
Admittance control with fixed damping has been a successful control strategy in previous human-robotic interaction research. This research implements a variable damping admittance controller in a 7-DOF robotic arm coupled with a human subject’s arm at the end

Admittance control with fixed damping has been a successful control strategy in previous human-robotic interaction research. This research implements a variable damping admittance controller in a 7-DOF robotic arm coupled with a human subject’s arm at the end effector to study the trade-off of agility and stability and aims to produce a control scheme which displays both fast rise time and stability. The variable damping controller uses a measure of intent of movement to vary damping to aid the user’s movement to a target. The range of damping values is bounded by incorporating knowledge of a human arm to ensure the stability of the coupled human-robot system. Human subjects completed experiments with fixed positive, fixed negative, and variable damping controllers to evaluate the variable damping controller’s ability to increase agility and stability. Comparisons of the two fixed damping controllers showed as fixed damping increased, the coupled human-robot system reacted with less overshoot at the expense of rise time, which is used as a measure of agility. The inverse was also true; as damping became increasingly negative, the overshoot and stability of the system was compromised, while the rise time became faster. Analysis of the variable damping controller demonstrated humans could extract the benefits of the variable damping controller in its ability to increase agility in comparison to a positive damping controller and increase stability in comparison to a negative damping controller.
Downloads
PDF (22.2 MB)
Download count: 4

Details

Title
  • Variable Damping Control of a Robotic Arm to Improve Trade-off Between Performance and Stability
Contributors
Date Created
2019
Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Mechanical Engineering 2019

    Machine-readable links