Adaptive Lighting for Data-Driven Non-Line-Of-Sight 3D Localization
Document
Description
Non-line-of-sight (NLOS) imaging of objects not visible to either the camera or illumina-
tion source is a challenging task with vital applications including surveillance and robotics.
Recent NLOS reconstruction advances have been achieved using time-resolved measure-
ments. Acquiring these time-resolved measurements requires expensive and specialized
detectors and laser sources. In work proposes a data-driven approach for NLOS 3D local-
ization requiring only a conventional camera and projector. The localisation is performed
using a voxelisation and a regression problem. Accuracy of greater than 90% is achieved
in localizing a NLOS object to a 5cm × 5cm × 5cm volume in real data. By adopting
the regression approach an object of width 10cm to localised to approximately 1.5cm. To
generalize to line-of-sight (LOS) scenes with non-planar surfaces, an adaptive lighting al-
gorithm is adopted. This algorithm, based on radiosity, identifies and illuminates scene
patches in the LOS which most contribute to the NLOS light paths, and can factor in sys-
tem power constraints. Improvements ranging from 6%-15% in accuracy with a non-planar
LOS wall using adaptive lighting is reported, demonstrating the advantage of combining
the physics of light transport with active illumination for data-driven NLOS imaging.
tion source is a challenging task with vital applications including surveillance and robotics.
Recent NLOS reconstruction advances have been achieved using time-resolved measure-
ments. Acquiring these time-resolved measurements requires expensive and specialized
detectors and laser sources. In work proposes a data-driven approach for NLOS 3D local-
ization requiring only a conventional camera and projector. The localisation is performed
using a voxelisation and a regression problem. Accuracy of greater than 90% is achieved
in localizing a NLOS object to a 5cm × 5cm × 5cm volume in real data. By adopting
the regression approach an object of width 10cm to localised to approximately 1.5cm. To
generalize to line-of-sight (LOS) scenes with non-planar surfaces, an adaptive lighting al-
gorithm is adopted. This algorithm, based on radiosity, identifies and illuminates scene
patches in the LOS which most contribute to the NLOS light paths, and can factor in sys-
tem power constraints. Improvements ranging from 6%-15% in accuracy with a non-planar
LOS wall using adaptive lighting is reported, demonstrating the advantage of combining
the physics of light transport with active illumination for data-driven NLOS imaging.