Description
In the 1980's, Gromov and Piatetski-Shapiro introduced a technique called "hybridization'' which allowed them to produce non-arithmetic hyperbolic lattices from two non-commensurable arithmetic lattices. It has been asked whether an analogous hybridization technique exists for complex hyperbolic lattices, because certain

In the 1980's, Gromov and Piatetski-Shapiro introduced a technique called "hybridization'' which allowed them to produce non-arithmetic hyperbolic lattices from two non-commensurable arithmetic lattices. It has been asked whether an analogous hybridization technique exists for complex hyperbolic lattices, because certain geometric obstructions make it unclear how to adapt this technique. This thesis explores one possible construction (originally due to Hunt) in depth and uses it to produce arithmetic lattices, non-arithmetic lattices, and thin subgroups in SU(2,1).
Downloads
PDF (814.5 KB)
Download count: 20

Details

Title
  • Hybrid Subgroups of Complex Hyperbolic Lattices
Contributors
Date Created
2019
Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2019
    • bibliography
      Includes bibliographical references (pages 57-60)
    • Field of study: Mathematics

    Citation and reuse

    Statement of Responsibility

    by Joseph Wells

    Machine-readable links