Separation of Agile Waveform Time-Frequency Signatures from Coexisting Multimodal Systems
Document
Description
As the demand for wireless systems increases exponentially, it has become necessary
for different wireless modalities, like radar and communication systems, to share the
available bandwidth. One approach to realize coexistence successfully is for each
system to adopt a transmit waveform with a unique nonlinear time-varying phase
function. At the receiver of the system of interest, the waveform received for process-
ing may still suffer from low signal-to-interference-plus-noise ratio (SINR) due to the
presence of the waveforms that are matched to the other coexisting systems. This
thesis uses a time-frequency based approach to increase the SINR of a system by estimating the unique nonlinear instantaneous frequency (IF) of the waveform matched
to the system. Specifically, the IF is estimated using the synchrosqueezing transform,
a highly localized time-frequency representation that also enables reconstruction of
individual waveform components. As the IF estimate is biased, modified versions of
the transform are investigated to obtain estimators that are both unbiased and also
matched to the unique nonlinear phase function of a given waveform. Simulations
using transmit waveforms of coexisting wireless systems are provided to demonstrate
the performance of the proposed approach using both biased and unbiased IF estimators.
for different wireless modalities, like radar and communication systems, to share the
available bandwidth. One approach to realize coexistence successfully is for each
system to adopt a transmit waveform with a unique nonlinear time-varying phase
function. At the receiver of the system of interest, the waveform received for process-
ing may still suffer from low signal-to-interference-plus-noise ratio (SINR) due to the
presence of the waveforms that are matched to the other coexisting systems. This
thesis uses a time-frequency based approach to increase the SINR of a system by estimating the unique nonlinear instantaneous frequency (IF) of the waveform matched
to the system. Specifically, the IF is estimated using the synchrosqueezing transform,
a highly localized time-frequency representation that also enables reconstruction of
individual waveform components. As the IF estimate is biased, modified versions of
the transform are investigated to obtain estimators that are both unbiased and also
matched to the unique nonlinear phase function of a given waveform. Simulations
using transmit waveforms of coexisting wireless systems are provided to demonstrate
the performance of the proposed approach using both biased and unbiased IF estimators.