Description
Highly automated vehicles require drivers to remain aware enough to takeover
during critical events. Driver distraction is a key factor that prevents drivers from reacting
adequately, and thus there is need for an alert to help drivers regain situational awareness
and be able to act quickly and successfully should a critical event arise. This study
examines two aspects of alerts that could help facilitate driver takeover: mode (auditory
and tactile) and direction (towards and away). Auditory alerts appear to be somewhat
more effective than tactile alerts, though both modes produce significantly faster reaction
times than no alert. Alerts moving towards the driver also appear to be more effective
than alerts moving away from the driver. Future research should examine how
multimodal alerts differ from single mode, and see if higher fidelity alerts influence
takeover times.
during critical events. Driver distraction is a key factor that prevents drivers from reacting
adequately, and thus there is need for an alert to help drivers regain situational awareness
and be able to act quickly and successfully should a critical event arise. This study
examines two aspects of alerts that could help facilitate driver takeover: mode (auditory
and tactile) and direction (towards and away). Auditory alerts appear to be somewhat
more effective than tactile alerts, though both modes produce significantly faster reaction
times than no alert. Alerts moving towards the driver also appear to be more effective
than alerts moving away from the driver. Future research should examine how
multimodal alerts differ from single mode, and see if higher fidelity alerts influence
takeover times.
Details
Title
- Buzz or Beep? How Mode of Alert Influences Driver Takeover Following Automation Failure
Contributors
- Brogdon, Michael A (Author)
- Gray, Robert (Thesis advisor)
- Branaghan, Russell (Committee member)
- Chiou, Erin (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018
Subjects
Resource Type
Collections this item is in
Note
- Masters Thesis Human Systems Engineering 2018