Dynamic Modeling, Design and Control of Power Converters for Renewable Interface and Microgrids

Document
Description
Distributed energy resources have experienced dramatic growth and are beginning to support a significant amount of customer loads. Power electronic converters are the primary interface between the grid and the distributed energy resources/storage and offer several advantages including fast control,

Distributed energy resources have experienced dramatic growth and are beginning to support a significant amount of customer loads. Power electronic converters are the primary interface between the grid and the distributed energy resources/storage and offer several advantages including fast control, flexibility and high efficiency. The efficiency and the power density by volume are important performance metrics of a power converter. Compact and high efficiency power converter is beneficial to the cost-effectiveness of the converter interfaced generations. In this thesis, a soft-switching technique is proposed to reduce the size of passive components in a grid-connected converter while maintaining a high power conversion efficiency. The dynamic impact of the grid-connected converters on the power system is causing concerns as the penetration level of the converter interfaced generation increases, necessitating a detailed dynamic analysis. The unbalanced nature of distribution systems makes the conventional transient stability simulation based on positive sequence components unsuitable for this purpose. Methods suitable for the dynamic simulation of grid-connected converters in large scale unbalanced and single-phase systems are presented in this thesis to provide an effective way to study the dynamic interactions between the grid and the converters. Dynamic-link library (DLL) of converter dynamic models are developed by which converter dynamic simulations can be easily conducted in OpenDSS. To extend the converter controls testing beyond pure simulation, real-time simulation can be utilized where partial realistic scenarios can be created by including realistic components in the simulation loop. In this work, a multi-platform, real-time simulation testbed including actual digital controller platforms, communication networks and inverters has been developed for validating the microgrid concepts and implementations. A hierarchical converted based microgrid control scheme is proposed which enables the islanded microgrid operation with 100% penetration level of converter interfaced generation. Impact of the load side dynamic modeling on the converter response is also discussed in this thesis.