Description
Network mining has been attracting a lot of research attention because of the prevalence of networks. As the world is becoming increasingly connected and correlated, networks arising from inter-dependent application domains are often collected from different sources, forming the so-called

Network mining has been attracting a lot of research attention because of the prevalence of networks. As the world is becoming increasingly connected and correlated, networks arising from inter-dependent application domains are often collected from different sources, forming the so-called multi-sourced networks. Examples of such multi-sourced networks include critical infrastructure networks, multi-platform social networks, cross-domain collaboration networks, and many more. Compared with single-sourced network, multi-sourced networks bear more complex structures and therefore could potentially contain more valuable information.

This thesis proposes a multi-layered HITS (Hyperlink-Induced Topic Search) algorithm to perform the ranking task on multi-sourced networks. Specifically, each node in the network receives an authority score and a hub score for evaluating the value of the node itself and the value of its outgoing links respectively. Based on a recent multi-layered network model, which allows more flexible dependency structure across different sources (i.e., layers), the proposed algorithm leverages both within-layer smoothness and cross-layer consistency. This essentially allows nodes from different layers to be ranked accordingly. The multi-layered HITS is formulated as a regularized optimization problem with non-negative constraint and solved by an iterative update process. Extensive experimental evaluations demonstrate the effectiveness and explainability of the proposed algorithm.
Downloads
PDF (851.3 KB)

Details

Title
  • Multi-layered HITS on Multi-sourced Networks
Contributors
Date Created
2018
Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Computer Science 2018

    Machine-readable links