Description
The primary objective in time series analysis is forecasting. Raw data often exhibits nonstationary behavior: trends, seasonal cycles, and heteroskedasticity. After data is transformed to a weakly stationary process, autoregressive moving average (ARMA) models may capture the remaining temporal dynamics to improve forecasting. Estimation of ARMA can be performed through regressing current values on previous realizations and proxy innovations. The classic paradigm fails when dynamics are nonlinear; in this case, parametric, regime-switching specifications model changes in level, ARMA dynamics, and volatility, using a finite number of latent states. If the states can be identified using past endogenous or exogenous information, a threshold autoregressive (TAR) or logistic smooth transition autoregressive (LSTAR) model may simplify complex nonlinear associations to conditional weakly stationary processes. For ARMA, TAR, and STAR, order parameters quantify the extent past information is associated with the future. Unfortunately, even if model orders are known a priori, the possibility of over-fitting can lead to sub-optimal forecasting performance. By intentionally overestimating these orders, a linear representation of the full model is exploited and Bayesian regularization can be used to achieve sparsity. Global-local shrinkage priors for AR, MA, and exogenous coefficients are adopted to pull posterior means toward 0 without over-shrinking relevant effects. This dissertation introduces, evaluates, and compares Bayesian techniques that automatically perform model selection and coefficient estimation of ARMA, TAR, and STAR models. Multiple Monte Carlo experiments illustrate the accuracy of these methods in finding the "true" data generating process. Practical applications demonstrate their efficacy in forecasting.
Download count: 15
Details
Title
- Three essays on shrinkage estimation and model selection of linear and nonlinear time series models
- 3 essays on shrinkage estimation and model selection of linear and nonlinear time series models
Contributors
- Giacomazzo, Mario (Author)
- Kamarianakis, Yiannis (Thesis advisor)
- Reiser, Mark R. (Committee member)
- McCulloch, Robert (Committee member)
- Hahn, Richard (Committee member)
- Fricks, John (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2018
- bibliographyIncludes bibliographical references (pages 119-131)
- Field of study: Statistics
Citation and reuse
Statement of Responsibility
by Mario Giacomazzo