Implementation and Comparison of H∞ Observers for Time-Delay Systems
Document
Description
In this thesis, different H∞ observers for time-delay systems are implemented and
their performances are compared. Equations that can be used to calculate observer gains are mentioned. Different methods that can be used to implement observers for time-delay systems are illustrated. Various stable and unstable systems are used and H∞ bounds are calculated using these observer designing methods. Delays are assumed to be known constants for all systems. H∞ gains are calculated numerically using disturbance signals and performances of observers are compared.
The primary goal of this thesis is to implement the observer for Time Delay Systems designed using SOS and compare its performance with existing H∞ optimal observers. These observers are more general than other observers for time-delay systems as they make corrections to the delayed state as well along with the present state. The observer dynamics can be represented by an ODE coupled with a PDE. Results shown in this thesis show that this type of observers performs better than other H∞ observers. Sub-optimal observer-based state feedback system is also generated and simulated using the SOS observer. The simulation results show that the closed loop system converges very quickly, and the observer can be used to design full state-feedback closed loop system.
their performances are compared. Equations that can be used to calculate observer gains are mentioned. Different methods that can be used to implement observers for time-delay systems are illustrated. Various stable and unstable systems are used and H∞ bounds are calculated using these observer designing methods. Delays are assumed to be known constants for all systems. H∞ gains are calculated numerically using disturbance signals and performances of observers are compared.
The primary goal of this thesis is to implement the observer for Time Delay Systems designed using SOS and compare its performance with existing H∞ optimal observers. These observers are more general than other observers for time-delay systems as they make corrections to the delayed state as well along with the present state. The observer dynamics can be represented by an ODE coupled with a PDE. Results shown in this thesis show that this type of observers performs better than other H∞ observers. Sub-optimal observer-based state feedback system is also generated and simulated using the SOS observer. The simulation results show that the closed loop system converges very quickly, and the observer can be used to design full state-feedback closed loop system.