Description
We consider the problem of routing packets with end-to-end hard deadlines in multihop communication networks. This is a challenging problem due to the complex spatial-temporal correlation among flows with different deadlines especially when significant traffic fluctuation exists. To tackle this problem, based on the spatial-temporal routing algorithm that specifies where and when a packet should be routed using concepts of virtual links and virtual routes, we proposed a constrained resource-pooling heuristic into the spatial-temporal routing, which enhances the ``work-conserving" capability and improves the delivery ratio. Our extensive simulations show that the policies improve the performance of spatial-temporal routing algorithm and outperform traditional policies such as backpressure and earliest-deadline-first (EDF) for more general traffic flows in multihop communication networks.
Download count: 2
Details
Title
- Spatial-Temporal Routing for Supporting End to End Hard Deadlines in Multi-hop Networks
Contributors
- Wang, Weichang (Author)
- Ying, Lei (Thesis advisor)
- Zhang, Junshan (Committee member)
- Ewaisha, Ahmed (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018
Subjects
Resource Type
Collections this item is in
Note
- Masters Thesis Electrical Engineering 2018