Representing and Reasoning about Dynamic Multi-Agent Domains: An Action Language Approach

Document
Description
Reasoning about actions forms the basis of many tasks such as prediction, planning, and diagnosis in a dynamic domain. Within the reasoning about actions community, a broad class of languages, called action languages, has been developed together with a methodology

Reasoning about actions forms the basis of many tasks such as prediction, planning, and diagnosis in a dynamic domain. Within the reasoning about actions community, a broad class of languages, called action languages, has been developed together with a methodology for their use in representing and reasoning about dynamic domains. With a few notable exceptions, the focus of these efforts has largely centered around single-agent systems. Agents rarely operate in a vacuum however, and almost in parallel, substantial work has been done within the dynamic epistemic logic community towards understanding how the actions of an agent may effect not just his own knowledge and/or beliefs, but those of his fellow agents as well. What is less understood by both communities is how to represent and reason about both the direct and indirect effects of both ontic and epistemic actions within a multi-agent setting. This dissertation presents ongoing research towards a framework for representing and reasoning about dynamic multi-agent domains involving both classes of actions.

The contributions of this work are as follows: the formulation of a precise mathematical model of a dynamic multi-agent domain based on the notion of a transition diagram; the development of the multi-agent action languages mA+ and mAL based upon this model, as well as preliminary investigations of their properties and implementations via logic programming under the answer set semantics; precise formulations of the temporal projection, and planning problems within a multi-agent context; and an investigation of the application of the proposed approach to the representation of, and reasoning about, scenarios involving the modalities of knowledge and belief.