Description
Two-dimensional transition metal dichalcogenides (TMDCs) such as

molybdenum disulfide (MoS2), tungsten disulfide (WS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2) are attractive for use in biotechnology, optical and electronics devices due to their promising and tunable electrical, optical and chemical properties.

Two-dimensional transition metal dichalcogenides (TMDCs) such as

molybdenum disulfide (MoS2), tungsten disulfide (WS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2) are attractive for use in biotechnology, optical and electronics devices due to their promising and tunable electrical, optical and chemical properties. To fulfill the variety of requirements for different applications, chemical treatment methods are developed to tune their properties. In this dissertation, plasma treatment, chemical doping and functionalization methods have been applied to tune the properties of TMDCs. First, plasma treatment of TMDCs results in doping and generation of defects, as well as the synthesis of transition metal oxides (TMOs) with rolled layers that have increased surface-to-volume ratio and are promising for electrochemical applications. Second, chemical functionalization is another powerful approach for tuning the properties of TMDCs for use in many applications. To covalently functionalize the basal planes of TMDCs, previous reports begin with harsh treatments like lithium intercalation that disrupt the structure and lead to a phase transformation from semiconducting to metallic. Instead, this work demonstrates the direct covalent functionalization of semiconducting MoS2 using aryl diazonium salts without lithium treatments. It preserves the structure and semiconducting nature of MoS2, results in covalent C-S bonds on basal planes and enables different functional groups to be tethered to the MoS2 surface via the diazonium salts. The attachment of fluorescent proteins has been used as a demonstration and it suggests future applications in biology and biosensing. The effects of the covalent functionalization on the electronic transport properties of MoS2 were then studied using field effect transistor (FET) devices.
Reuse Permissions
  • Downloads
    PDF (63.7 MB)
    Download count: 3

    Details

    Title
    • Surface Treatment of Two-Dimensional Molybdenum Disulfide
    Contributors
    Date Created
    2018
    Subjects
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Doctoral Dissertation Mathematics 2018

    Machine-readable links