Description
The media disperses a large amount of information daily pertaining to political events social movements, and societal conflicts. Media pertaining to these topics, no matter the format of publication used, are framed a particular way. Framing is used not for

The media disperses a large amount of information daily pertaining to political events social movements, and societal conflicts. Media pertaining to these topics, no matter the format of publication used, are framed a particular way. Framing is used not for just guiding audiences to desired beliefs, but also to fuel societal change or legitimize/delegitimize social movements. For this reason, tools that can help to clarify when changes in social discourse occur and identify their causes are of great use. This thesis presents a visual analytics framework that allows for the exploration and visualization of changes that occur in social climate with respect to space and time. Focusing on the links between data from the Armed Conflict Location and Event Data Project (ACLED) and a streaming RSS news data set, users can be cued into interesting events enabling them to form and explore hypothesis. This visual analytics framework also focuses on improving intervention detection, allowing users to hypothesize about correlations between events and happiness levels, and supports collaborative analysis.
Reuse Permissions
  • Downloads
    PDF (7.9 MB)
    Download count: 2

    Details

    Title
    • Visual Event Cueing in Linked Spatiotemporal Data
    Contributors
    Date Created
    2017
    Subjects
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Computer Science 2017

    Machine-readable links