Description
Online social networks are the hubs of social activity in cyberspace, and using them to exchange knowledge, experiences, and opinions is common. In this work, an advanced topic modeling framework is designed to analyse complex longitudinal health information from social media with minimal human annotation, and Adverse Drug Events and Reaction (ADR) information is extracted and automatically processed by using a biased topic modeling method. This framework improves and extends existing topic modelling algorithms that incorporate background knowledge. Using this approach, background knowledge such as ADR terms and other biomedical knowledge can be incorporated during the text mining process, with scores which indicate the presence of ADR being generated. A case control study has been performed on a data set of twitter timelines of women that announced their pregnancy, the goals of the study is to compare the ADR risk of medication usage from each medication category during the pregnancy.
In addition, to evaluate the prediction power of this approach, another important aspect of personalized medicine was addressed: the prediction of medication usage through the identification of risk groups. During the prediction process, the health information from Twitter timeline, such as diseases, symptoms, treatments, effects, and etc., is summarized by the topic modelling processes and the summarization results is used for prediction. Dimension reduction and topic similarity measurement are integrated into this framework for timeline classification and prediction. This work could be applied to provide guidelines for FDA drug risk categories. Currently, this process is done based on laboratory results and reported cases.
Finally, a multi-dimensional text data warehouse (MTD) to manage the output from the topic modelling is proposed. Some attempts have been also made to incorporate topic structure (ontology) and the MTD hierarchy. Results demonstrate that proposed methods show promise and this system represents a low-cost approach for drug safety early warning.
In addition, to evaluate the prediction power of this approach, another important aspect of personalized medicine was addressed: the prediction of medication usage through the identification of risk groups. During the prediction process, the health information from Twitter timeline, such as diseases, symptoms, treatments, effects, and etc., is summarized by the topic modelling processes and the summarization results is used for prediction. Dimension reduction and topic similarity measurement are integrated into this framework for timeline classification and prediction. This work could be applied to provide guidelines for FDA drug risk categories. Currently, this process is done based on laboratory results and reported cases.
Finally, a multi-dimensional text data warehouse (MTD) to manage the output from the topic modelling is proposed. Some attempts have been also made to incorporate topic structure (ontology) and the MTD hierarchy. Results demonstrate that proposed methods show promise and this system represents a low-cost approach for drug safety early warning.
Download count: 1
Details
Title
- A Biased Topic Modeling Approach for Case Control Study from Health Related Social Media Postings
Contributors
- Yang, Jian (Author)
- Gonzalez, Graciela (Thesis advisor)
- Davulcu, Hasan (Thesis advisor)
- Liu, Huan (Committee member)
- Papotti, Paolo (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2017
Subjects
Resource Type
Collections this item is in
Note
- Doctoral Dissertation Computer Science 2017