Description
Machine learning technology has made a lot of incredible achievements in recent years. It has rivalled or exceeded human performance in many intellectual tasks including image recognition, face detection and the Go game. Many machine learning algorithms require huge amount of computation such as in multiplication of large matrices. As silicon technology has scaled to sub-14nm regime, simply scaling down the device cannot provide enough speed-up any more. New device technologies and system architectures are needed to improve the computing capacity. Designing specific hardware for machine learning is highly in demand. Efforts need to be made on a joint design and optimization of both hardware and algorithm.
For machine learning acceleration, traditional SRAM and DRAM based system suffer from low capacity, high latency, and high standby power. Instead, emerging memories, such as Phase Change Random Access Memory (PRAM), Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM), and Resistive Random Access Memory (RRAM), are promising candidates providing low standby power, high data density, fast access and excellent scalability. This dissertation proposes a hierarchical memory modeling framework and models PRAM and STT-MRAM in four different levels of abstraction. With the proposed models, various simulations are conducted to investigate the performance, optimization, variability, reliability, and scalability.
Emerging memory devices such as RRAM can work as a 2-D crosspoint array to speed up the multiplication and accumulation in machine learning algorithms. This dissertation proposes a new parallel programming scheme to achieve in-memory learning with RRAM crosspoint array. The programming circuitry is designed and simulated in TSMC 65nm technology showing 900X speedup for the dictionary learning task compared to the CPU performance.
From the algorithm perspective, inspired by the high accuracy and low power of the brain, this dissertation proposes a bio-plausible feedforward inhibition spiking neural network with Spike-Rate-Dependent-Plasticity (SRDP) learning rule. It achieves more than 95% accuracy on the MNIST dataset, which is comparable to the sparse coding algorithm, but requires far fewer number of computations. The role of inhibition in this network is systematically studied and shown to improve the hardware efficiency in learning.
For machine learning acceleration, traditional SRAM and DRAM based system suffer from low capacity, high latency, and high standby power. Instead, emerging memories, such as Phase Change Random Access Memory (PRAM), Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM), and Resistive Random Access Memory (RRAM), are promising candidates providing low standby power, high data density, fast access and excellent scalability. This dissertation proposes a hierarchical memory modeling framework and models PRAM and STT-MRAM in four different levels of abstraction. With the proposed models, various simulations are conducted to investigate the performance, optimization, variability, reliability, and scalability.
Emerging memory devices such as RRAM can work as a 2-D crosspoint array to speed up the multiplication and accumulation in machine learning algorithms. This dissertation proposes a new parallel programming scheme to achieve in-memory learning with RRAM crosspoint array. The programming circuitry is designed and simulated in TSMC 65nm technology showing 900X speedup for the dictionary learning task compared to the CPU performance.
From the algorithm perspective, inspired by the high accuracy and low power of the brain, this dissertation proposes a bio-plausible feedforward inhibition spiking neural network with Spike-Rate-Dependent-Plasticity (SRDP) learning rule. It achieves more than 95% accuracy on the MNIST dataset, which is comparable to the sparse coding algorithm, but requires far fewer number of computations. The role of inhibition in this network is systematically studied and shown to improve the hardware efficiency in learning.
Download count: 8
Details
Title
- Algorithm and Hardware Co-design for Learning On-a-chip
Contributors
- Xu, Zihan (Author)
- Cao, Yu (Thesis advisor)
- Chakrabarti, Chaitali (Committee member)
- Seo, Jae-Sun (Committee member)
- Yu, Shimeng (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2017
Resource Type
Collections this item is in
Note
- Doctoral Dissertation Electrical Engineering 2017