H-alpha emitting galaxies at z ~0.6 in the deep and wide narrowband survey
Document
Description
New measurements of the Hα luminosity function (LF) and star formation rate
(SFR) volume density are presented for galaxies at z∼0.62 in the COSMOS field.
These results are part of the Deep And Wide Narrowband Survey (DAWN), a unique
infrared imaging program with large areal coverage (∼1.1 deg 2 over 5 fields) and
sensitivity (9.9 × 10 −18 erg/cm 2 /s at 5σ).
The present sample, based on a single DAWN field, contains 116 Hα emission-
line candidates at z∼0.62, 25% of which have spectroscopic confirmations. These
candidates have been selected through comparison of narrow and broad-band images
in the infrared and through matching with existing catalogs in the COSMOS field.
The dust-corrected LF is well described by a Schechter function with L* = 10 42.64±0.92
erg s −1 , Φ* = 10 −3.32±0.93 Mpc −3 (L* Φ* = 10 39.40±0.15 ), and α = −1.75 ± 0.09. From
this LF, a SFR density of ρ SF R =10 −1.37±0.08 M○ yr −1 Mpc −3 was calculated. An
additional cosmic variance uncertainty of ∼ 20% is also expected. Both the faint
end slope and luminosity density that are derived are consistent with prior results at
similar redshifts, with reduced uncertainties.
An analysis of these Hα emitters’ sizes is also presented, showing a direct corre-
lation between the galaxies’ sizes and their Hα emission.
(SFR) volume density are presented for galaxies at z∼0.62 in the COSMOS field.
These results are part of the Deep And Wide Narrowband Survey (DAWN), a unique
infrared imaging program with large areal coverage (∼1.1 deg 2 over 5 fields) and
sensitivity (9.9 × 10 −18 erg/cm 2 /s at 5σ).
The present sample, based on a single DAWN field, contains 116 Hα emission-
line candidates at z∼0.62, 25% of which have spectroscopic confirmations. These
candidates have been selected through comparison of narrow and broad-band images
in the infrared and through matching with existing catalogs in the COSMOS field.
The dust-corrected LF is well described by a Schechter function with L* = 10 42.64±0.92
erg s −1 , Φ* = 10 −3.32±0.93 Mpc −3 (L* Φ* = 10 39.40±0.15 ), and α = −1.75 ± 0.09. From
this LF, a SFR density of ρ SF R =10 −1.37±0.08 M○ yr −1 Mpc −3 was calculated. An
additional cosmic variance uncertainty of ∼ 20% is also expected. Both the faint
end slope and luminosity density that are derived are consistent with prior results at
similar redshifts, with reduced uncertainties.
An analysis of these Hα emitters’ sizes is also presented, showing a direct corre-
lation between the galaxies’ sizes and their Hα emission.