Description
Two ideas that extends on the theory of General Relativity are introduced and then the phenomenology they can offer is explored. The first idea shows how certain types of $f(R)$ gravity allows for traversable wormholes among its vacuum solutions. This

Two ideas that extends on the theory of General Relativity are introduced and then the phenomenology they can offer is explored. The first idea shows how certain types of $f(R)$ gravity allows for traversable wormholes among its vacuum solutions. This is surprising to find in such simple setting as these type of solutions usually requires fairly complex constructions to satisfy the equations of motion of a gravitational theory. The second idea is the matter bounce description of the early universe where a fairly unique feature of the model is identified. Consequences of this feature could allow the paradigm to distinguish itself from other alternative descriptions, such as inflation, through late time observations. An explicit example of this claim is worked out by studying a model involving an interaction in the dark sector. Results of a more astrophysical nature, where a careful analysis of the morphology of blazar halos is performed, are also presented in the Appendix. The analysis determined that the $Q$-statistic is an appropriate tool to probe the properties of the intergalactic magnetic fields responsible for the halos formation.
Reuse Permissions
  • Downloads
    PDF (7.6 MB)
    Download count: 2

    Details

    Title
    • Topics in cosmology and gravitation
    Contributors
    Date Created
    2017
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2017
    • bibliography
      Includes bibliographical references (pages 69-82)
    • Field of study: Physics

    Citation and reuse

    Statement of Responsibility

    by Francis Duplessis

    Machine-readable links