Description
This work presents analysis and results for the NPDGamma experiment, measuring

the spin-correlated photon directional asymmetry in the $\vec{n}p\rightarrow

d\gamma$ radiative capture of polarized, cold neutrons on a parahydrogen

target. The parity-violating (PV) component of this asymmetry

$A_{\gamma,PV}$ is unambiguously related to

This work presents analysis and results for the NPDGamma experiment, measuring

the spin-correlated photon directional asymmetry in the $\vec{n}p\rightarrow

d\gamma$ radiative capture of polarized, cold neutrons on a parahydrogen

target. The parity-violating (PV) component of this asymmetry

$A_{\gamma,PV}$ is unambiguously related to the $\Delta I = 1$ component of

the hadronic weak interaction due to pion exchange. Measurements in the second

phase of NPDGamma were taken at the Oak Ridge National Laboratory (ORNL)

Spallation Neutron Source (SNS) from late 2012 to early 2014, and then again in

the first half of 2016 for an unprecedented level of statistics in order to

obtain a measurement that is precise with respect to theoretical predictions of

$A_{\gamma,PV}=O(10^{-8})$. Theoretical and experimental background,

description of the experimental apparatus, analysis methods, and results for

the high-statistics measurements are given.
Reuse Permissions
  • Downloads
    PDF (2.9 MB)
    Download count: 3

    Details

    Title
    • Precise measurement of the photon directional asymmetry in the np--d gamma reaction
    Contributors
    Date Created
    2017
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2017
    • bibliography
      Includes bibliographical references (pages 115-120)
    • Field of study: Physics

    Citation and reuse

    Statement of Responsibility

    by David Blyth

    Machine-readable links