Description
Cyber systems, including IoT (Internet of Things), are increasingly being used ubiquitously to vastly improve the efficiency and reduce the cost of critical application areas, such as finance, transportation, defense, and healthcare. Over the past two decades, computing efficiency and hardware cost have dramatically been improved. These improvements have made cyber systems omnipotent, and control many aspects of human lives. Emerging trends in successful cyber system breaches have shown increasing sophistication in attacks and that attackers are no longer limited by resources, including human and computing power. Most existing cyber defense systems for IoT systems have two major issues: (1) they do not incorporate human user behavior(s) and preferences in their approaches, and (2) they do not continuously learn from dynamic environment and effectively adapt to thwart sophisticated cyber-attacks. Consequently, the security solutions generated may not be usable or implementable by the user(s) thereby drastically reducing the effectiveness of these security solutions.
In order to address these major issues, a comprehensive approach to securing ubiquitous smart devices in IoT environment by incorporating probabilistic human user behavioral inputs is presented. The approach will include techniques to (1) protect the controller device(s) [smart phone or tablet] by continuously learning and authenticating the legitimate user based on the touch screen finger gestures in the background, without requiring users’ to provide their finger gesture inputs intentionally for training purposes, and (2) efficiently configure IoT devices through controller device(s), in conformance with the probabilistic human user behavior(s) and preferences, to effectively adapt IoT devices to the changing environment. The effectiveness of the approach will be demonstrated with experiments that are based on collected user behavioral data and simulations.
In order to address these major issues, a comprehensive approach to securing ubiquitous smart devices in IoT environment by incorporating probabilistic human user behavioral inputs is presented. The approach will include techniques to (1) protect the controller device(s) [smart phone or tablet] by continuously learning and authenticating the legitimate user based on the touch screen finger gestures in the background, without requiring users’ to provide their finger gesture inputs intentionally for training purposes, and (2) efficiently configure IoT devices through controller device(s), in conformance with the probabilistic human user behavior(s) and preferences, to effectively adapt IoT devices to the changing environment. The effectiveness of the approach will be demonstrated with experiments that are based on collected user behavioral data and simulations.
Details
Title
- An adaptive approach to securing ubiquitous smart devices in IoT environment with probabilistic user behavior prediction
Contributors
- Buduru, Arun Balaji (Author)
- Yau, Sik-Sang (Thesis advisor)
- Ahn, Gail-Joon (Committee member)
- Davulcu, Hasan (Committee member)
- Zhang, Yanchao (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016
Subjects
- Computer Science
- continuous authentication
- dynamic IoT environment assessment
- intelligent IoT device adaptation
- pro-active protection
- probabilistic human behaviors
- probabilistic reasoning
- Ubiquitous Computing
- Human Behavior
- Internet of things--Security measures.
- Internet of Things
- Information technology--Psychological aspects.
- Information Technology
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2016
- bibliographyIncludes bibliographical references (pages 80-85)
- Field of study: Computer science
Citation and reuse
Statement of Responsibility
by Arun Balaji Buduru