Description
Keyword search provides a simple and user-friendly mechanism for information search, and has become increasingly popular for accessing structured or semi-structured data. However, there are two open issues of keyword search on semi/structured data which are not well addressed by

Keyword search provides a simple and user-friendly mechanism for information search, and has become increasingly popular for accessing structured or semi-structured data. However, there are two open issues of keyword search on semi/structured data which are not well addressed by existing work yet.

First, while an increasing amount of investigation has been done in this important area, most existing work concentrates on efficiency instead of search quality and may fail to deliver high quality results from semantic perspectives. Majority of the existing work generates minimal sub-graph results that are oblivious to the entity and relationship semantics embedded in the data and in the user query. There are also studies that define results to be subtrees or subgraphs that contain all query keywords but are not necessarily ``minimal''. However, such result construction method suffers from the same problem of semantic mis-alignment between data and user query. In this work the semantics of how to {\em define} results that can capture users' search intention and then the generation of search intention aware results is studied.

Second, most existing research is incapable of handling large-scale structured data. However, as data volume has seen rapid growth in recent years, the problem of how to efficiently process keyword queries on large-scale structured data becomes important. MapReduce is widely acknowledged as an effective programming model to process big data. For keyword query processing on data graph, first graph algorithms which can efficiently return query results that are consistent with users' search intention are proposed. Then these algorithms are migrated to MapReduce to support big data. For keyword query processing on schema graph, it first transforms a keyword query into multiple SQL queries, then all generated SQL queries are run on the structured data. Therefore it is crucial to find the optimal way to execute a SQL query using MapReduce, which can minimize the processing time. In this work, a system called SOSQL is developed which generates the optimal query execution plan using MapReduce for a SQL query $Q$ with time complexity $O(n^2)$, where $n$ is the number of input tables of $Q$.
Reuse Permissions
  • Downloads
    PDF (4.1 MB)

    Details

    Title
    • Semantic keyword search on large-scale semi-structured data
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2016
    • bibliography
      Includes bibliographical references (pages 104-109)
    • Field of study: Computer science

    Citation and reuse

    Statement of Responsibility

    by Yi Shan

    Machine-readable links