Description
This paper investigates a relatively new analysis method for longitudinal data in the framework of functional data analysis. This approach treats longitudinal data as so-called sparse functional data. The first section of the paper introduces functional data and the general

This paper investigates a relatively new analysis method for longitudinal data in the framework of functional data analysis. This approach treats longitudinal data as so-called sparse functional data. The first section of the paper introduces functional data and the general ideas of functional data analysis. The second section discusses the analysis of longitudinal data in the context of functional data analysis, while considering the unique characteristics of longitudinal data such, in particular sparseness and missing data. The third section introduces functional mixed-effects models that can handle these unique characteristics of sparseness and missingness. The next section discusses a preliminary simulation study conducted to examine the performance of a functional mixed-effects model under various conditions. An extended simulation study was carried out to evaluate the estimation accuracy of a functional mixed-effects model. Specifically, the accuracy of the estimated trajectories was examined under various conditions including different types of missing data and varying levels of sparseness.
Reuse Permissions
  • Downloads
    PDF (1.6 MB)
    Download count: 15

    Details

    Title
    • Handling sparse and missing data in functional data analysis: a functional mixed-effects model approach
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.A., Arizona State University, 2016
    • bibliography
      Includes bibliographical references (pages 39-41)
    • Field of study: Psychology

    Citation and reuse

    Statement of Responsibility

    by Kimberly L. Ward

    Machine-readable links