Description
Rapid urban expansion and the associated landscape modifications have led to significant changes of surface processes in built environments. These changes further interact with the overlying atmospheric boundary layer and strongly modulate urban microclimate. To capture the impacts of urban

Rapid urban expansion and the associated landscape modifications have led to significant changes of surface processes in built environments. These changes further interact with the overlying atmospheric boundary layer and strongly modulate urban microclimate. To capture the impacts of urban land surface processes on urban boundary layer dynamics, a coupled urban land-atmospheric modeling framework has been developed. The urban land surface is parameterized by an advanced single-layer urban canopy model (SLUCM) with realistic representations of urban green infrastructures such as lawn, tree, and green roof, etc. The urban atmospheric boundary layer is simulated by a single column model (SCM) with both convective and stable schemes. This coupled SLUCM-SCM framework can simulate the time evolution and vertical profile of different meteorological variables such as virtual potential temperature, specific humidity and carbon dioxide concentration. The coupled framework has been calibrated and validated in the metropolitan Phoenix area, Arizona. To quantify the model sensitivity, an advanced stochastic approach based on Markov-Chain Monte Carlo procedure has been applied. It is found that the development of urban boundary layer is highly sensitive to surface characteristics of built terrains, including urban land use, geometry, roughness of momentum, and vegetation fraction. In particular, different types of urban vegetation (mesic/xeric) affect the boundary layer dynamics through different mechanisms. Furthermore, this framework can be implanted into large-scale models such as Weather Research and Forecasting model to assess the impact of urbanization on regional climate.
Reuse Permissions
  • Downloads
    PDF (1.5 MB)
    Download count: 7

    Details

    Title
    • Urban microclimatic response to landscape changes via land-atmosphere interactions
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2016
    • bibliography
      Includes bibliographical references (pages 99-111)
    • Field of study: Civil and environmental engineering

    Citation and reuse

    Statement of Responsibility

    by Jiyun Song

    Machine-readable links