Description
Automated planning addresses the problem of generating a sequence of actions that enable a set of agents to achieve their goals.This work investigates two important topics from the field of automated planning, namely model-lite planning and multi-agent planning. For model-lite

Automated planning addresses the problem of generating a sequence of actions that enable a set of agents to achieve their goals.This work investigates two important topics from the field of automated planning, namely model-lite planning and multi-agent planning. For model-lite planning, I focus on a prominent model named Annotated PDDL and it's related application of robust planning. For this model, I try to identify a method of leveraging additional domain information (available in the form of successful plan traces). I use this information to refine the set of possible domains to generate more robust plans (as compared to the original planner) for any given problem. This method also provides us a way of overcoming one of the major drawbacks of the original approach, namely the need for a domain writer to explicitly identify the annotations.

For the second topic, the central question I ask is ``{\em under what conditions are multiple agents actually needed to solve a given planning problem?}''. To answer this question, the multi-agent planning (MAP) problem is classified into several sub-classes and I identify the conditions in each of these sub-classes that can lead to required cooperation (RC). I also identify certain sub-classes of multi-agent planning problems (named DVC-RC problems), where the problems can be simplified using a single virtual agent. This insight is later used to propose a new planner designed to solve problems from these subclasses. Evaluation of this new planner on all the current multi-agent planning benchmarks reveals that most current multi-agent planning benchmarks only belong to a small subset of possible classes of multi-agent planning problems.
Reuse Permissions
  • Downloads
    PDF (2.3 MB)

    Details

    Title
    • An investigation of topics in model-lite planning and multi-agent planning
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2016
    • bibliography
      Includes bibliographical references (pages 71-72)
    • Field of study: Computer science

    Citation and reuse

    Statement of Responsibility

    by Sarath Sreedharan

    Machine-readable links