Description
According to the CDC in 2010, there were 2.8 million emergency room visits costing $7.9 billion dollars for treatment of nonfatal falling injuries in emergency departments across the country. Falls are a recognized risk factor for unintentional injuries among older

According to the CDC in 2010, there were 2.8 million emergency room visits costing $7.9 billion dollars for treatment of nonfatal falling injuries in emergency departments across the country. Falls are a recognized risk factor for unintentional injuries among older adults, accounting for a large proportion of fractures, emergency department visits, and urgent hospitalizations. The objective of this research was to identify and learn more about what factors affect balance using analysis techniques from nonlinear dynamics. Human balance and gait research traditionally uses linear or qualitative tests to assess and describe human motion; however, it is growing more apparent that human motion is neither a simple nor a linear task. In the 1990s Collins, first started applying stochastic processes to analyze human postural control system. Recently, Zakynthinaki et al. modeled human balance using the idea that humans will remain erect when perturbed until some boundary, or physical limit, is passed. This boundary is similar to the notion of basins of attraction in nonlinear dynamics and is referred to as the basin of stability. Human balance data was collected using dual force plates and Vicon marker position data for leans using only ankle movements and leans that were unrestricted. With this dataset, Zakynthinaki’s work was extended by comparing different algorithms used to create the critical curve (basin of stability boundary) that encloses the experimental data points as well as comparing the differences between the two leaning conditions.
Reuse Permissions
  • Downloads
    PDF (2.2 MB)
    Download count: 1

    Details

    Title
    • Basins of attraction in human balance
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2016
    • bibliography
      Includes bibliographical references (pages 41-44)
    • Field of study: Bioengineering

    Citation and reuse

    Statement of Responsibility

    by Victoria Smith

    Machine-readable links