Description
A computational framework based on convex optimization is presented for stability analysis of systems described by Partial Differential Equations (PDEs). Specifically, two forms of linear PDEs with spatially distributed polynomial coefficients are considered.

The first class includes linear coupled PDEs

A computational framework based on convex optimization is presented for stability analysis of systems described by Partial Differential Equations (PDEs). Specifically, two forms of linear PDEs with spatially distributed polynomial coefficients are considered.

The first class includes linear coupled PDEs with one spatial variable. Parabolic, elliptic or hyperbolic PDEs with Dirichlet, Neumann, Robin or mixed boundary conditions can be reformulated in order to be used by the framework. As an example, the reformulation is presented for systems governed by Schr¨odinger equation, parabolic type, relativistic heat conduction PDE and acoustic wave equation, hyperbolic types. The second form of PDEs of interest are scalar-valued with two spatial variables. An extra spatial variable allows consideration of problems such as local stability of fluid flows in channels and dynamics of population over two dimensional domains.

The approach does not involve discretization and is based on using Sum-of-Squares (SOS) polynomials and positive semi-definite matrices to parameterize operators which are positive on function spaces. Applying the parameterization to construct Lyapunov functionals with negative derivatives allows to express stability conditions as a set of LinearMatrix Inequalities (LMIs). The MATLAB package SOSTOOLS was used to construct the LMIs. The resultant LMIs then can be solved using existent Semi-Definite Programming (SDP) solvers such as SeDuMi or MOSEK. Moreover, the proposed approach allows to calculate bounds on the rate of decay of the solution norm.

The methodology is tested using several numerical examples and compared with the results obtained from simulation using standard methods of numerical discretization and analytic solutions.
Reuse Permissions
  • Downloads
    PDF (660.4 KB)
    Download count: 9

    Details

    Title
    • A convex approach for stability analysis of partial differential equations
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2016
    • bibliography
      Includes bibliographical references (pages 59-61)
    • Field of study: Mechanical engineering

    Citation and reuse

    Statement of Responsibility

    by Evgeny Meyer

    Machine-readable links