Description
The increased risk of falling and the worse ability to perform other daily physical activities in the elderly cause concern about monitoring and correcting basic everyday movement. In this thesis, a Kinect-based system was designed to assess one of the

The increased risk of falling and the worse ability to perform other daily physical activities in the elderly cause concern about monitoring and correcting basic everyday movement. In this thesis, a Kinect-based system was designed to assess one of the most important factors in balance control of human body when doing Sit-to-Stand (STS) movement: the postural symmetry in mediolateral direction. A symmetry score, calculated by the data obtained from a Kinect RGB-D camera, was proposed to reflect the mediolateral postural symmetry degree and was used to drive a real-time audio feedback designed in MAX/MSP to help users adjust themselves to perform their movement in a more symmetrical way during STS. The symmetry score was verified by calculating the Spearman correlation coefficient with the data obtained from Inertial Measurement Unit (IMU) sensor and got an average value at 0.732. Five healthy adults, four males and one female, with normal balance abilities and with no musculoskeletal disorders, were selected to participate in the experiment and the results showed that the low-cost Kinect-based system has the potential to train users to perform a more symmetrical movement in mediolateral direction during STS movement.
Reuse Permissions
  • Downloads
    PDF (5.1 MB)

    Details

    Title
    • The design and evaluation of a kinect-based postural symmetry assessment and training system
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2016
    • bibliography
      Includes bibliographical references (pages 36-38)
    • Field of study: Electrical engineering

    Citation and reuse

    Statement of Responsibility

    by Henghao Zhou

    Machine-readable links