Description
The grounding system in a substation is used to protect personnel and equipment. When there is fault current injected into the ground, a well-designed grounding system should disperse the fault current into the ground in order to limit the touch potential and the step potential to an acceptable level defined by the IEEE Std 80. On the other hand, from the point of view of economy, it is desirable to design a ground grid that minimizes the cost of labor and material. To design such an optimal ground grid that meets the safety metrics and has the minimum cost, an optimal ground grid application was developed in MATLAB, the OptimaL Ground Grid Application (OLGGA).
In the process of ground grid optimization, the touch potential and the step potential are introduced as nonlinear constraints in a two layer soil model whose parameters are set by the user. To obtain an accurate expression for these nonlinear constraints, the ground grid is discretized by using a ground-conductor (and ground-rod) segmentation method that breaks each conductor into reasonable-size segments. The leakage current on each segment and the ground potential rise (GPR) are calculated by solving a matrix equation involving the mutual resistance matrix. After the leakage current on each segment is obtained, the touch potential and the step potential can be calculated using the superposition principle.
A genetic algorithm is used in the optimization of the ground grid and a pattern search algorithm is used to accelerate the convergence. To verify the accuracy of the application, the touch potential and the step potential calculated by the MATLAB application are compared with those calculated by the commercialized grounding system analysis software, WinIGS.
The user's manual of the optimal ground grid application is also presented in this work.
In the process of ground grid optimization, the touch potential and the step potential are introduced as nonlinear constraints in a two layer soil model whose parameters are set by the user. To obtain an accurate expression for these nonlinear constraints, the ground grid is discretized by using a ground-conductor (and ground-rod) segmentation method that breaks each conductor into reasonable-size segments. The leakage current on each segment and the ground potential rise (GPR) are calculated by solving a matrix equation involving the mutual resistance matrix. After the leakage current on each segment is obtained, the touch potential and the step potential can be calculated using the superposition principle.
A genetic algorithm is used in the optimization of the ground grid and a pattern search algorithm is used to accelerate the convergence. To verify the accuracy of the application, the touch potential and the step potential calculated by the MATLAB application are compared with those calculated by the commercialized grounding system analysis software, WinIGS.
The user's manual of the optimal ground grid application is also presented in this work.
Download count: 1
Details
Title
- OLGGA: the optimaL ground grid application
Contributors
- Li, Songyan (Author)
- Tylavsky, Daniel J. (Thesis advisor)
- Ayyanar, Raja (Committee member)
- Vittal, Vijay (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: M.S., Arizona State University, 2016
- bibliographyIncludes bibliographical references (pages 92-93)
- Field of study: Electrical engineering
Citation and reuse
Statement of Responsibility
by Songyan Li