Description
Concurrency bugs are one of the most notorious software bugs and are very difficult to manifest. Significant work has been done on detection of atomicity violations bugs for high performance systems but there is not much work related to detect

Concurrency bugs are one of the most notorious software bugs and are very difficult to manifest. Significant work has been done on detection of atomicity violations bugs for high performance systems but there is not much work related to detect these bugs for embedded systems. Although criteria to claim existence of bugs remains same, approach changes a bit for embedded systems. The main focus of this research is to develop a systemic methodology to address the issue from embedded systems perspective. A framework is developed which predicts the access interleaving patterns that may violate atomicity using memory references of shared variables and provides support to force and analyze these schedules for any output change, system fault or change in execution path.
Reuse Permissions
  • Downloads
    PDF (902.9 KB)
    Download count: 3

    Details

    Title
    • Dynamic analysis of multithreaded embedded software to expose atomicity violations
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2016
    • bibliography
      Includes bibliographical references (pages 32-33)
    • Field of study: Computer science

    Citation and reuse

    Statement of Responsibility

    by Jay Patel

    Machine-readable links