Description
This work implements three switched mode power amplifier topologies namely inverse class-D (CMCD), push-pull class-E and inverse push-pull class-E, in a GaN-on-Si process for medium power level (5-10W) femto/pico-cells base-station applications. The presented power amplifiers address practical implementation design constraints

This work implements three switched mode power amplifier topologies namely inverse class-D (CMCD), push-pull class-E and inverse push-pull class-E, in a GaN-on-Si process for medium power level (5-10W) femto/pico-cells base-station applications. The presented power amplifiers address practical implementation design constraints and explore the fundamental performance limitations of switched-mode power amplifiers for cellular band. The designs are analyzed and compared with respect to non-idealities like finite on-resistance, finite-Q of inductors, bond-wire effects, input signal duty cycle, and supply and component variations. These architectures are designed for non-constant envelope inputs in the form of digitally modulated signals such as RFPWM, which undergo duty cycle variation. After comparing the three topologies, this work concludes that the inverse push-pull class-E power amplifier shows lower efficiency degradation at reduced duty cycles. For GaN based discrete power amplifiers which have less drain capacitance compared to GaAs or CMOS and where the switch loss is dominated by wire-bonds, an inverse push-pull class-E gives highest output power at highest efficiency. Push-pull class-E can give efficiencies comparable to inverse push-pull class-E in presence of bondwires on tuning the Zero-Voltage Switching (ZVS) network components but at a lower output power. Current-Mode Class-D (CMCD) is affected most by the presence of bondwires and gives least output power and efficiency compared to other two topologies. For systems dominated by drain capacitance loss or which has no bondwires, the CMCD and push-pull class-E gives better output power than inverse push-pull class-E. However, CMCD is more suitable for high breakdown voltage process.
Reuse Permissions
  • Downloads
    PDF (1.3 MB)
    Download count: 6

    Details

    Title
    • GaN-on-Si RF switched mode power amplifiers for non-constant envelope signals
    Contributors
    Date Created
    2015
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2015
    • bibliography
      Includes bibliographical references (pages 53-57)
    • Field of study: Electrical engineering

    Citation and reuse

    Statement of Responsibility

    by Shishir Ramasare Shukla

    Machine-readable links