Characterization of oxide thin films and interfaces using transmission electron microscopy
Document
Description
Multifunctional oxide thin-films grown on silicon and several oxide substrates have been characterized using High Resolution (Scanning) Transmission Electron Microscopy (HRTEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Electron Energy-Loss Spectroscopy (EELS). Oxide thin films grown on SrTiO3/Si pseudo-substrate showed the presence of amorphised SrTiO3 (STO) at the STO/Si interface. Oxide/oxide interfaces were observed to be atomically clean with very few defects.
Al-doped SrTiO3 thin films grown on Si were of high crystalline quality. The Ti/O ratio estimated from EELS line scans revealed that substitution of Ti by Al created associated O vacancies. The strength of the crystal field in STO was measured using EELS, and decreased by ~1.0 eV as Ti4+ was substituted by Al3+. The damping of O-K EELS peaks confirmed the rise in oxygen vacancies. For Co-substituted STO films grown on Si, the EDS and EELS spectra across samples showed Co doping was quite random. The substitution of Ti4+ with Co3+ or Co2+ created associated oxygen vacancies for charge balance. Presence of oxygen vacancies was also confirmed by shift of Ti-L EELS peaks towards lower energy by ~0.4 eV. The crystal-field strength decreased by ~0.6 eV as Ti4+ was partially substituted by Co3+ or Co2+.
Spinel Co3O4 thin films grown on MgAl2O4 (110) were observed to have excellent crystalline quality. The structure of the Co3O4/MgAl2O4 interface was determined using HRTEM and image simulations. It was found that MgAl2O4 substrate is terminated with Al and oxygen. Stacking faults and associated strain fields in spinel Co3O4 were found along [111], [001], and [113] using Geometrical Phase Analysis.
NbO2 films on STO (111) were observed to be tetragonal with lattice parameter of 13.8 Å and NbO films on LSAT (111) were observed to be cubic with lattice parameter of 4.26 Å. HRTEM showed formation of high quality NbOx films and excellent coherent interface. HRTEM of SrAl4 on LAO (001) confirmed an island growth mode. The SrAl4 islands were highly crystalline with excellent epitaxial registry with LAO. By comparing HRTEM images with image simulations, the interface structure was determined to consist of Sr-terminated SrAl4 (001) on AlO2-terminated LAO (001).
Al-doped SrTiO3 thin films grown on Si were of high crystalline quality. The Ti/O ratio estimated from EELS line scans revealed that substitution of Ti by Al created associated O vacancies. The strength of the crystal field in STO was measured using EELS, and decreased by ~1.0 eV as Ti4+ was substituted by Al3+. The damping of O-K EELS peaks confirmed the rise in oxygen vacancies. For Co-substituted STO films grown on Si, the EDS and EELS spectra across samples showed Co doping was quite random. The substitution of Ti4+ with Co3+ or Co2+ created associated oxygen vacancies for charge balance. Presence of oxygen vacancies was also confirmed by shift of Ti-L EELS peaks towards lower energy by ~0.4 eV. The crystal-field strength decreased by ~0.6 eV as Ti4+ was partially substituted by Co3+ or Co2+.
Spinel Co3O4 thin films grown on MgAl2O4 (110) were observed to have excellent crystalline quality. The structure of the Co3O4/MgAl2O4 interface was determined using HRTEM and image simulations. It was found that MgAl2O4 substrate is terminated with Al and oxygen. Stacking faults and associated strain fields in spinel Co3O4 were found along [111], [001], and [113] using Geometrical Phase Analysis.
NbO2 films on STO (111) were observed to be tetragonal with lattice parameter of 13.8 Å and NbO films on LSAT (111) were observed to be cubic with lattice parameter of 4.26 Å. HRTEM showed formation of high quality NbOx films and excellent coherent interface. HRTEM of SrAl4 on LAO (001) confirmed an island growth mode. The SrAl4 islands were highly crystalline with excellent epitaxial registry with LAO. By comparing HRTEM images with image simulations, the interface structure was determined to consist of Sr-terminated SrAl4 (001) on AlO2-terminated LAO (001).